Вернутся на главную

Линейные диофантовы уравнения с 2-мя неведомыми


Линейные диофантовы уравнения с 2-мя неведомыми на нашем сайте

Статьи
Статьи для студентов
Статьи для учеников
Научные статьи
Образовательные статьи Статьи для учителей
Домашние задания
Домашние задания для школьников
Домашние задания с решениями Задания с решениями
Задания для студентов
Методички
Методические пособия
Методички для студентов
Методички для преподавателей
Новые учебные работы
Учебные работы
Доклады
Студенческие доклады
Научные доклады
Школьные доклады
Рефераты
Рефератывные работы
Школьные рефераты
Доклады учителей
Учебные документы
Разные образовательные материалы Разные научные материалы
Разные познавательные материалы
Шпаргалки
Шпаргалки для студентов
Шпаргалки для учеников
Другое

Найти все целые x и y, такие, что ax + by = c (где a, b, c – целые числа).

Уравнения в целых числах называют диофантовыми по имени древнегреческого математика Диофанта, жившего, предположительно, в III веке н.э. Линейные диофантовы уравнения содержат неизвестные величины только в первой степени.

Напоминаем, что решить уравнение – значит найти все его решения и доказать, что других нет. В частности, если уравнение имеет бесконечно много решений, нужно описать всё множество решений некоторой общей формулой, а не ограничиться одним или несколькими примерами. С другой стороны, если уравнение имеет пустое множество решений, то обосновать этот факт – тоже означает решить уравнение.

Пример

2x + 5y = 17 (2)

Сначала найдём множество решений уравнения 2x + 5y = 1.

2 × 3 – 5 × 1 = 1, поэтому можем считать, что x0 = 3, y0 = –1.

Поскольку мы решаем уравнение 2x + 5y = 17, а не 2x + 5y = 1, то значения x0 и y0 нужно увеличить в 17 раз.

Получим: 17x0 = 51, 17y0 = –17.

В этом случае 2 × (17x0) + 5 × (17y0) = 17.

Но задача состоит в том, чтобы найти все пары целых чисел, удовлетворяющих равенству (2).

Если увеличить 17x0 на 5t, а 17y0 уменьшить на 2t (где t – некоторое целое число), то пара чисел x = 17x0 + 5t и y = 17y0 – 2t будет удовлетворять условию (2), поскольку слагаемое 2x увеличится на 10t, а слагаемое 5y уменьшится на 10t.

Итак, ответ:

x = 51 + 5t, y = –17 – 2t.

Примечание

Некоторые линейные диофантовы уравнения имеют пустое множество решений, например, 6x + 21y = 2. При этом левая часть равенства кратна 3, а правая часть равенства не кратна 3.

Простые числа

Определение.

Натуральное число называют простым, если оно делится только на себя и на 1. Натуральное число, не являющееся простым, называют составным.

Примечание.

Число 1 не является ни простым, ни составным.

Решето Эратосфена

Удобный способ выписать все простые числа, не превосходящие заданного натурального числа, придумал древнегреческий математик Эратосфен (276 год до н. э. — 194 год до н. э.). Идея состоит в том, чтобы выписать подряд все целые числа от 2 до некоторого числа n, а затем вычеркнуть сначала все числа, кратные 2, затем все числа, кратные 3, и так далее, вычёркивая все числа, кратные простому числу p. Можно остановить действия тогда, когда величина p2 превзойдёт n.





Название статьи Линейные диофантовы уравнения с двумя неизвестными