Вернутся на главную

Общие положения. Электронная энергия является одним из часто встречающихся продуктов в процессах купли-продажи


Общие положения. Электронная энергия является одним из часто встречающихся продуктов в процессах купли-продажи на нашем сайте

Статьи
Статьи для студентов
Статьи для учеников
Научные статьи
Образовательные статьи Статьи для учителей
Домашние задания
Домашние задания для школьников
Домашние задания с решениями Задания с решениями
Задания для студентов
Методички
Методические пособия
Методички для студентов
Методички для преподавателей
Новые учебные работы
Учебные работы
Доклады
Студенческие доклады
Научные доклады
Школьные доклады
Рефераты
Рефератывные работы
Школьные рефераты
Доклады учителей
Учебные документы
Разные образовательные материалы Разные научные материалы
Разные познавательные материалы
Шпаргалки
Шпаргалки для студентов
Шпаргалки для учеников
Другое

Электрическая энергия является одним из самых распространенных товаров в процессах купли-продажи. При этом электрическая энергия отличается особыми свойствами:

• совпадением во времени процессов производства, передачи, распределения и потребления;

• зависимостью характеристик качества электрической энергии не только от процессов производства, передачи и распределения, но и от процессов потребления.

То есть, электроэнергия – это один из немногих товаров, качество которого может напрямую зависеть и от потребителя. Тем не менее, на электроэнергию как товар распространяются соответствующие требования Гражданского кодекса РФ, ФЗ «О защите прав потребителей» и др. Нормы качества электрической энергии определяются межгосударственным стандартом [9], руководящими документами [10, 11], хотя ряд свойств электрической энергии может напрямую создавать угрозы безопасности жизни, здоровья, людей (табл. 4.1). Поэтому целесообразно нормы качества электроэнергии регламентировать специальным техническим регламентом на уровне федерального закона.

Таблица 4.1.

Ущерб потребителя при нарушении нормативов качества электроэнергии

Свойства электроэнергии Вид ущерба
Отклонение частоты Недовыпуск и брак продукции
Отклонение напряжения Недовыпуск и брак продукции, сокращение срока службы электрооборудования, дополнительные потери мощности и энергии
Провал напряжения Сбой работы электронного оборудования, брак продукции, угроза безопасности жизни человека
Импульс напряжения Выход из строя оборудования, угроза безопасности жизни, здоровья человека
Временное перенапряжение Выход из строя оборудования
Несимметрия трехфазной системы напряжения в 4-х проводной сети – в 3-х проводной сети Дополнительные потери мощности и энергии, невозможность использования оборудования. Дополнительные потери мощности и энергии, сокращение срока службы и выход из строя оборудования
Несинусоидальность напряжения Дополнительные потери мощности и энергии, сокращение срока службы электрооборудования, сбой работы и выход из строя оборудования
Колебания напряжения Неблагоприятное воздействие на зрение человека, сбой работы и выход из строя оборудования

Есть и другие причины повышения уровня статуса норм по качеству электроэнергии. Некоторые из них:

Нормы качества электроэнергии являются обязательными для исполнения во всех режимах работы систем электроснабжения общего назначения за исключением режимов, обусловленных форс-мажорными обстоятельствами.

Нормы ГОСТ 13109-97 подлежат включению в технические условия (ТУ) на присоединение и в договорах энергоснабжения.

Требования к качеству электроэнергии в ТУ и договорах энергоснабжения для потребителей, являющихся источником ухудшения качества электроэнергии, могут быть более жесткими, чем нормы ГОСТ 13109-97.

Нормы качества электроэнергии должны применяться при проектировании и эксплуатации электрических сетей, установлении уровней помехоустойчивости и помехоэмиссии технических средств.

Нормы качества электроэнергии, установленные ГОСТ 13109-97, являются обязательными для систем электроснабжения потребителей электроэнергии, если для этих систем отсутствуют отраслевые нормативные документы.

4.2. Влияние качества электроэнергии на работу потребителей, затраты энергии и ресурсов [1]

На практике наблюдаются отклонения параметров электрической энергии, подаваемой потребителям, от требуемых стандартизированных значений. Эти отклонения негативно влияют на работу потребителей, приводят к непроизводительным потерям энергии и материальных ресурсов. Причинами ухудшения качества электроэнергии могут являться:

короткие замыкания в распределительной сети;

аварии в электрической сети;

неравномерность распределения нагрузки у потребителя по отдельным фазам;

срабатывание средств защиты и автоматики;

электромагнитные и сетевые возмущения (переходные процессы), связанные с включением, отключением и работой мощных потребителей электроэнергии и др.

Показатели качества электрической энергии связаны с изменением напряжения, а также с условиями обеспечения нагрузок в трехфазной сети и должны соответствовать требованиям ГОСТ 13109-97 (2002) [9].

Рассмотрим влияние некоторых показателей качества на работу потребителей.

Отклонение напряжения от номинального значения.Отклонения напряжения от номинального значения происходят вследствие суточных, сезонных и технологических изменений электрической нагрузки потребителей, изменения мощности компенсирующих устройств, регулирования напряжения на выводах генераторов электростанций и трансформаторов на подстанциях энергосистем, а также изменения схем и параметров электрических сетей.

В соответствии с ГОСТ 13109-97 (2002) устанавливаются нормально и предельно допустимые отклонения напряжения на выводах приемников электрической энергии, которые составляют ±5 и ±10 % номинального значения напряжения.

В первую очередь на потребителях отражается установившееся отклонение напряжения. При понижении напряжения по отношению к его номинальному значению происходит уменьшение светового потока от ламп накаливания, снижается освещенность в помещении, на рабочих местах. Так, понижение напряжения на 10 % приводит к уменьшению освещенности рабочей поверхности в среднем на 40 %, что вызывает снижение производительности труда, повышенную утомляемость персонала. Повышение напряжения для ламп накаливания также на 10 % приводит к сокращению их срока службы и вызывает избыточное освещение рабочих поверхностей, что неблагоприятно сказывается на восприятии информации с мониторов и цифровых приборов. Газоразрядные люминесцентные лампы при указанном диапазоне изменения напряжения не столь существенно изменяют светоотдачу, но увеличение напряжения на 10-15 % приводит к резкому снижению их срока службы, а понижение напряжения на 20 % вызывает отказы зажигания ламп.

Отклонение напряжения от номинального значения приводит к изменению технических показателей электропривода. Снижение напряжения на входе асинхронных двигателей способствует изменению таких механических характеристик, как электромагнитный момент, частота вращения (скольжение). При этом уменьшается производительность механизма, а при понижении напряжения до уровня, когда механический момент на валу двигателя превышает электромагнитный, запуск двигателя становится невозможным. Установлено, что при понижении напряжения на 15 % номинального значения электромагнитный момент асинхронного двигателя снижается до 72 %, а при провалах напряжения двигатель вообще может остановиться. При понижении напряжения на входе электродвигателя при той же потребляемой мощности увеличивается потребляемый ток и происходит дополнительный нагрев обмоток двигателя, что приводит к сокращению срока его службы. При работе двигателя на напряжении 0,9 номинального значения срок его службы сокращается практически вдвое.

Повышение напряжения на входе электродвигателя вызывает увеличение потребления реактивной мощности. В среднем на каждый процент повышения напряжения потребление реактивной мощности увеличивается на 3 % для двигателей мощностью 20-100 кВт и на 5-7 % для двигателей меньшей мощности.

Использование электрической энергии в электротермических установках с отклонениями напряжения изменяет технологический процесс и себестоимость производимой продукции. Выделение теплоты в электротермических системах пропорционально приложенному напряжению во второй степени, поэтому при отклонении напряжения даже на 5 % производительность может измениться на 10-20 %.

Работа электролизных установок при пониженном напряжении связана со снижением их производительности, дополнительным расходом электродных систем, повышением удельного расхода электроэнергии и себестоимости продукции, получаемой в процессе электролиза.

Понижение напряжения на 5 % номинального значения приводит, например, к снижению выпуска продукции при производстве хлора и каустической соды на 8 %. Повышение напряжения более 1,05Uном вызывает недопустимый перегрев ванн электролизера.

Колебания напряжения.Колебания напряжения происходят вследствие резкого переменного изменения нагрузки на участке электрической сети, например, из-за включения асинхронного двигателя с большой кратностью пускового тока, технологических установок с быстропеременным режимом работы, сопровождающимся скачками активной и реактивной мощностей, таких как привод реверсивных прокатных станов, дуговые сталеплавильные печи, сварочные аппараты и т.п.

Колебания напряжения часто отражаются на источниках света. Человеческий глаз начинает воспринимать колебания светового потока, вызванные колебаниями напряжения. Колебания напряжения сети отрицательно сказываются на зрительном восприятии объектов, графической и текстовой информации. От пределов изменения напряжения и частоты колебаний в этом случае зависит возникновение фликкер-эффектов (мерцание света), что связано с ухудшением условий труда, понижением его производительности и утомляемостью работников.

Колебания напряжения отрицательно сказываются на работе высокочастотных преобразователей, синхронных двигателей, на качестве работы индукционных нагревательных устройств. При изменении напряжения в сети может выпускаться бракованная продукция в текстильной и бумажной промышленности. Колебания частоты двигателей намоточных и протяжных устройств приводят к обрывам нитей и бумаги, к выпуску продукции разной толщины.

Колебания напряжения могут привести к неправильной работе защитных и автоматических управляющих систем. При изменении напряжения и его колебаниях свыше 15 % возможно отключение магнитных пускателей.

Отклонение частоты переменного напряжения сети от номинального значения.Одним из важнейших параметров электрической системы, обеспечивающей генерацию и потребление электроэнергии переменного тока, является стабильность частоты сети. Частота переменного напряжения в электрической системе определяется частотой вращения генераторов на электростанциях. В случае отсутствия баланса по выработке и потреблению электроэнергии генераторы начинают вращаться с другой частотой, что отражается на частоте сети. Таким образом, отклонение частоты сети является общесистемным показателем, характеризующим баланс мощности в системе. Для компенсации изменения частоты и напряжения в узлах сети система должна иметь резерв активной и реактивной мощностей, а также устройства регулирования, которые позволяют поддерживать отклонения режимных параметров в пределах нормированных значений. Отклонение частоты сети часто служит сигналом для увеличения выработки электроэнергии генерирующими станциями и для отключения части нагрузки во время перегрузок и при авариях с короткими замыканиями в системе. Нормализации частоты можно добиться в результате строгого соблюдения баланса генерируемой и потребляемой мощностей, исключением аварийных ситуаций и несанкционированных коммутаций на электрических станциях и подстанциях.

При изменении частоты меняется мощность металлорежущих станков, вентиляторов, центробежных насосов. Снижение частоты часто приводит к изменению производительности оборудования, а зачастую и к ухудшению качества выпускаемой продукции [6].

Несимметрия напряжений в трехфазной системе при неравномерном распределении нагрузки по фазам.Несимметрия напряжений обусловлена наличием мощных однофазных нагрузок, неравномерным распределением нагрузки между фазами, обрывом одного из фазных проводов.

Неодинаковые значения напряжения и тока в фазах обычно свидетельствуют о неравномерном распределении нагрузок у потребителя по отдельным фазам.

Несимметричные значения фазных напряжений приводят к тому, что в электрических сетях появляются дополнительные потери. При этом существенно сокращается срок службы асинхронных двигателей вследствие дополнительного теплового нагрева, при этом целесообразно выбирать двигатели большей номинальной мощности, чем требуемая.

Несимметрия фазных напряжений в электрических машинах переменного тока равнозначна появлению магнитных полей, векторы магнитной индукции которых вращаются в противоположном направлении с удвоенной синхронной частотой, что может нарушить технологические процессы.

При несимметрии напряжений сети, посредством которой питаются синхронные двигатели, могут дополнительно возникать опасные вибрации. При значительной несимметрии фазного напряжения вибрации могут оказаться столь существенными, что возникает опасность разрушения фундаментов, на которых устанавливаются двигатели, и нарушения сварных соединений.

Несимметрия фазных напряжений оказывает заметное влияние на работу силовых трансформаторов, вызывая сокращение срока их службы. Анализ работы трехфазных силовых трансформаторов показал, что при номинальной нагрузке и коэффициенте несимметрии токов, равном 10%, срок службы изоляции трансформаторов сокращается на 16 %.

Несинусоидальность кривой напряжения при нелинейной нагрузке.Несинусоидальность кривой напряжения равнозначна возникновению высших гармонических составляющих в питающем напряжении. Чаще всего появление высших гармоник связано с подключением оборудования с нелинейной зависимостью сопротивления нагрузки. К такому оборудованию можно отнести преобразовательные устройства (выпрямители, преобразователи, стабилизаторы), газоразрядные приборы (люминесцентные лампы), установки с прерыванием тока в технологическом процессе (электросварка, дуговые печи и др.).

Несинусоидальность кривой напряжения влияет на все группы потребителей. Это вызвано дополнительным нагревом элементов электроприемников от высших гармоник. Высшие гармоники вызывают дополнительные потери мощности в двигателях, трансформаторах, а также тепловые потери в изоляции, силовых кабелях и системах, в которых используются электрические конденсаторы, ухудшают условия работы батарей конденсаторов устройств компенсации реактивной мощности. При несинусоидальной кривой напряжения происходит ускоренное старение изоляции электрических машин, трансформаторов, конденсаторов и кабелей в результате необратимых физико-химических процессов, протекающих под воздействием высокочастотных полей, повышенного нагрева токоведущих частей сердечников и изоляции.

Таким образом, снижение качества электроэнергии приводит к ухудшению условий труда, уменьшению объемов производства, потерям ресурсов из-за ухудшения качества продукции и снижению срока службы оборудования, а также к дополнительным затратам электрической энергии.

Показатели качества электроэнергии могут быть определены с помощью специальных приборов. В результате анализа показаний этих приборов в ряде случаев можно определить и виновников ухудшения качества электроэнергии, которыми могут быть энергоснабжающая организация, потребители с переменной, нелинейной или несимметричной нагрузкой.

В настоящее время существуют устройства для улучшения качества электроэнергии. Уменьшить влияние высших гармоник на питающее напряжение удается с помощью специальных активных фильтров, которые подавляют высшие гармоники. Для равномерного распределения нагрузки применяют симметрирующие устройства, включающие в себя емкостные и индуктивные элементы.

4.3. Проверка качества работы энергоустановок [12]

Как показано выше, от качества работы элементов энергоустановки и систем энергоснабжения зачастую зависит и состояние промышленного производства, и качество жизни населения. Качество энергоснабжения напрямую влияет на обеспечение эффективности, надежности и безопасности у энергопотребителей.

Задача энергоаудита качества – получить доказательства о фактических значениях выходных параметров (потребительских свойств) энергоустановки, энергоносителя, энергооборудования и проверить соответствие этих параметров обоснованным потребностям промышленных и бытовых потребителей, проектной и технической документации, установленным нормам и правилам, а также современному уровню технологического развития.

Основная информация о технических характеристиках электрооборудования содержится в их технических паспортах. Кроме того, стандарты предписывают производителям оборудования наносить на его поверхность номинальные параметры работы.

Рабочие характеристики оборудования, необходимые для потребителей, обычно можно почерпнуть из проектной и эксплуатационной документации на объект, в котором установлено данное оборудование.

Это же касается и систем энергоснабжения в целом, для которых должен существовать также и специализированный документ: схема энергоснабжения.

К сожалению, зачастую случается так, что найти необходимую документацию не удается, маркировка оборудования закрашена, а требования, на основе которых разрабатывался проект энергоустановки, не соответствует современным.

Качество энергоносителя фиксируется в договорах энергоснабжения и, как правило, должно подтверждаться сертификатом или гарантироваться поставщиком.

Однако то и другое у нас в стране находится пока еще в начальной стадии развития, а в договорной практике принято ограничиваться указанием только энергетических характеристик энергоносителя.

Поэтому на сегодняшний день одним из основных источников аудиторских доказательств по качественным характеристикам работы энергоустановок являются вахтенные журналы оперативного учета и контрольные измерения, выполненные самим аудитором.

Особенности энергоаудита качества рассмотрим на примере систем электроснабжения.

Качество электрической энергии,как известно,обуславливается ее пригодностью для обеспечения нормального функционирования технических средств (электрических, электронных, радиоэлектронных и других) потребителей электрической энергии.

Еще раз подчеркнем, что особенность электрической энергии, как продукции, в частности состоит в неразрывности и одновременности процессов производства и потребления, в результате чего искажающее влияние на качество энергии может быть оказано как электроприемниками потребителя, так и привнесено извне в виде конструктивной электромагнитной помехи, распространяемой по общей электрической сети. При этом источниками искажений качества электрической энергии могут быть как собственные электроприемники, так и электроприемники других потребителей, а также электротехническое оборудование электрических станций и сетей. В части терминов и определений параметров качества электрической энергии энергоаудитору следует руководствоваться ГОСТ 23875-88 [22].

Качество электрической энергии (КЭ) оказывает существенное влияние на надежность и экономичность работы электрооборудования. Ухудшение КЭ может привести к имущественному ущербу у потребителей (выход из строя электротехнического оборудования), нарушение работы устройств автоматики, телемеханики, связи, электронной техники, увеличение потерь электроэнергии, нерегламентируемым изменениям технологического процесса, снижению качества выпускаемой продукции, производительности труда и др. В отдельных случаях, КЭ может повлиять на безопасность жизни и здоровья людей.

Зачастую из-за неудовлетворительного КЭ оказываются бессмысленными капиталовложения в современные технологии и промышленное оборудование, требовательное к параметрам электроснабжения.

Во многом сложившиеся положение с КЭ в электрических сетях объясняется тем, что длительное время электроэнергетика России развивалась по экстенсивному пути. В первую очередь решались задачи обеспечения электроэнергией растущих потребностей промышленности, сельского и коммунально-бытового хозяйства страны, повышения надежности электроснабжения и др.

На этом этапе развития электроэнергетики обеспечение КЭ, поставляемой потребителям, не рассматривалось энергоснабжающими организациями как одна из основных задач во взаимоотношениях с ними.

В связи с этим, энергоснабжающие организации не уделяли должного внимания созданию системы управления КЭ, отпускаемой потребителям, в том числе созданию организационной структуры, разработке внутренних документов, организации системы контроля и анализа КЭ и др. Вопросы КЭ не затрагивались в договорах энергоснабжения и технических условиях на присоединение потребителей.

В настоящее время спрос на аудит КЭ постоянно повышается. Потребители электроэнергии, как юридические, так и физические лица, не желают мириться с положением, когда энергоснабжающие организации не обеспечивают качество поставляемой энергии.

В связи с этим, задачей энергетического аудита качества является не только установление степени соответствия параметров энергоносителя или энергооборудования установленным требованиям, но и выработка комплекса мероприятий, обеспечивающих стабильность поддержания требуемых показателей качества и их защиту от возможного искажения.

Квалифицированный аудит системы управления качеством электрической энергии позволит энергоснабжающим организациям улучшить качество поставляемой энергии, уменьшить убытки от претензий со стороны потребителей, повысить надежность электроснабжения и стабильность выручки.

Под системой качества энергоснабжающей организации понимают совокупность организационной структуры, методик, процессов и ресурсов энергоснабжающей организации, которая необходима для осуществления административного руководства обеспечением качества поставляемой электрической энергии.

Аудиторские проверки проводятся путем контроля производства электрической энергии и/или системы качества, а также экспертизы протоколов периодического или непрерывного контроля КЭ.

Контроль качества электрической энергии подразумевает оценку соответствия показателей установленным нормам и определение стороны виновной в ухудшении этих показателей.

Нормы качества электрической энергии в системах электроснабжения общего назначения установлены для следующих показателей КЭ:

• отклонение частоты;

• установившиеся отклонение напряжения;

• коэффициент искажения синусоидальности кривой напряжения;

• коэффициент n-ой гармонической составляющей напряжения;

• коэффициент несимметрии напряжений по обратной последовательности;

• коэффициент несимметрии напряжений по нулевой последовательности.

Первые два показателя являются наиболее критичными для электропотребителей, поэтому с учетом только этих двух показателей установлена наиболее массовая процедура обязательной сертификации электрической энергии.

Определение показателей качества электрической энергии задача нетривиальная.

Большинство процессов в электрических сетях – быстротекущие, все нормируемые показатели качества электрической энергии не могут быть одномоментно измерены напрямую – их необходимо рассчитывать, а окончательное заключение можно дать только статистически обработанными результатами.

Поэтому для определения показателей КЭ необходимо выполнить большой объем измерений с высокой скоростью и одновременной математической и статистической обработкой значений этих параметров. Причем самый большой поток измерений необходим для определения несинусоидальности напряжения. Для определения всех гармоник до 40-ой включительно и в пределах допустимых погрешностей требуется выполнять измерения мгновенных значений трех междуфазных напряжений 256 раз за период (3·256·50=38400 в секунду). А для определения виновной стороны, одновременно измеряются мгновенные значения фазных токов и фазовый сдвиг между напряжением и током, только в этом случае возможно определить, с какой стороны и какой величины внесена та или иная помеха. Наиболее сложная математика задействована при оценке колебаний напряжения. ГОСТ 13109-97 нормирует эти явления для огибающей меандровой (прямоугольной) формы, а в сети колебания напряжения имеют случайный характер.

Здесь же необходимо указать на наиболее массовые причины, ухудшающие показатели КЭ:

• удаленность потребителя от центра питания;

• малое сечение проводов в высоковольтных внешних сетях, по которым поставляется электроэнергия потребителю;

• плохое качество электрических соединений во внутренней сети потребителя;

• превышение потребителями мощности электроприемников, согласованной с электроснабжающей организацией;

• самовольное подключение абонентов, не зарегистрированных в электроснабжающей организации;

• несимметричная нагрузка фаз;

• использование потребителями приемников электроэнергии с резкопеременной нагрузкой, импульсными блоками питания;

• переходные процессы в электрических сетях из-за коротких замыканий, ударов молний в элементы сети, действий систем релейной защиты и автоматики, коммутаций различного электрооборудования, обрывов нулевого провода в сетях 0,4 кВ;

• ошибочные действия персонала и ложные срабатывания средств защиты и автоматики;

• отсутствие или недостаточность централизованного регулирования напряжения, средств компенсации реактивной мощности.

При выражении мнения о способах повышения КЭ аудитору целесообразно рассмотреть эффективность следующих технических мероприятий:

1. проведение поэтапной реконструкции в самых удаленных участках распределительной электросети 6-10/0,4 кВ, где уровень напряжения недопустимо низок;

2. увеличение сечения линий электропередач;

3. присоединение к более мощной системе энергоснабжения;

4. организация работы по выявлению самовольно подключившихся к электросети абонентов;

5. периодическая перефазировка нагрузок;

6. питание мощных искажающих нагрузок от отдельной системы шин;

7. внедрение автоматизированных систем коммерческого учета электроэнергии с контролем КЭ или автоматизированных систем управления КЭ;

8. выполнение сезонных переключений потребителей на трансформаторных подстанциях;

9. применение ЧРП или устройств плавного пуска электроприемников с большими пусковыми токами;

10.применение конденсаторных установок для компенсации реактивной мощности в распределительной сети;

Кроме того, важно выразить мнение по договорам энергоснабжения на предмет четкого распределения ответственности сторон за недопустимое отклонение показателей от установленных норм.


[1] Примечание: Вопросы воздействия на различные компоненты окружающей среды и применимости, а также экономические аспекты обсуждаются в разделе 3.6.7





Название статьи Общие положения. Электрическая энергия является одним из самых распространенных товаров в процессах купли-продажи