В операторе IF могут быть даны следующие комментарии состояния: IF Ch1 Ch2 THEN {Ch1 < Ch2} WRITE(Ch1) ELSE {Ch1 >= Ch2} WRITE(Ch2) Ch1 Ch2 в первой строке может принимать значение TRUE либо значение FALSE. Однако комментарий состояния в операторе THEN {Ch1 < Ch2} на следующей строке может быть утверждением того, что условие должно быть равно TRUE на входе в часть THEN оператора IF. Основа для этого утверждения в том, как выполняется оператор IF Паскаль-машиной. Т.е. не важно, что произошло раньше, не важно, какие значения переменных Ch1 и Ch2 могут быть на входе в часть THEN, значения условия Ch1 < Ch2 ДОЛЖНО быть равно TRUE. Булевы операторы. Оператор NOT Ранее упомянутый оператор IF иллюстрирует о том как рассуждать о состоянии значений переменных в программе. Комментарии состояния в части THEN утверждают, что значение Ch1 = является противоположным оператору = Ch2 является иитинным (TRUE) в то время как значение Ch1 < Ch2 является ложью (FALSE) и наоборот. Булевый оператор NOT меняет значение остинности на противоположное: NOT(TRUE) = FALSE NOT(FALSE) = TRUE NOT – это унарный (применяющийся к одному операнду), префиксный (предшествующий операнду) оператор. Поскольку NOT(NOT(FALSE)) = NOT(TRUE) = FALSE NOT(NOT(TRUE)) = NOT(FALSE) = TRUE И это единственные возможные варианты, то NOT(NOT(P)) = P для любого Булева значения P. Оператор AND Рассмотрим вложенный оператор IF с комментариями состояния: IF Ch1 < Ch2 THEN { Ch1 < Ch2 } IF Ch2 < Ch3 THEN { Ch1 < Ch2 < Ch3 } WRITE(Ch1) ELSE { Ch1 < Ch2, Ch3 <= Ch2 } IF Ch1 < Ch3 THEN { Ch1 < Ch3 <= Ch2 } WRITE(Ch1_ ELSE { Ch3 <= Ch1 < Ch2 } WRITE(Ch3) Комментарий состояния {Ch1 < Ch2 < Ch3} выражает два утверждения о том, что значение Ch1 преджествует Ch2 и значение Ch2 предшествует Ch3. Булевый оператор AND захватывает это интуитивное значение. AND – это бинарный (два операнда) инфиксный (расположенный между своими операндами) оператор, который принимает значение TRUE, если значения обоих Булевых операндов являются истинными (TRUE). Во всех остальных случаях он принимает значение FALSE. TRUE AND TRUE = TRUE TRUE AND FALSE = FALSE FALSE AND TRUE = FALSE FALSE AND FALSE = FALSE Операции сравнения могут обычно объединяться с оператором AND. Когда одинаковые операнды встречаются в объединенном условии, чаще получается более простое условие с тем же самым значением истинности. Например:
Более простое сравнение является эквивалентным, поскольку AND требует выполнения обоих объединенных сравнения, включая возможность их противоречия. Во втором случае, эквивалентность операндов не может быть произойти в Ch1<=Ch2, поскольку Ch1 < Ch2 это запрещает. Оператор OR В предыдущем операторе IF есть 2 случая, когда оператор WRITE может быть достигнут. Значение Ch1 < Ch2 должно быть TRUE и одно либо оба значения Ch2 < Ch3, Ch1 < Ch3 должны быть TRUE. Булевый оператор OR – это бинарный инфиксный оператор: TRUE OR TRUE = TRUE TRUE OR FALSE = TRUE FALSE OR TRUE = TRUE FALSE OR FALSE = FALSE Вот несколько полезных комбинаций использования OR
Таблицы истинности для булевых операторов.
Булевы выражения. Булеы операторы и операнды могут быть объединены при помощи скобок в Булевы выражения. Любое такое выражение, внутренние операнды которого являются булевыми значениями могут быть преобразованы в одно значение истинности при помощи таблицы истинности. Например, используя T и F в качестве значений истинности. T or ((NOT F) AND F) = T Результат может быть получен за один шаг путем повторного нахождения внутреннего выражения, заключенного в скобки и замены его значением из таблицы истинности:
Булевы тождества. Уравнение между двумя булевыми выражениями, которое не зависит от того, какие значения принимают соответствующие операнды, вроде NOT(NOT P) = P называется булевым тождеством. 15 полезных булевых тождеств показаны ниже: TRUE AND P = P TRUE OR P = TRUE FALSE AND P = FALSE FALSE OR P = P NOT(NOT P) = p P AND (NOT P) = FALSE P OR (NOT P) = TRUE P OR Q = Q OR P P AND Q = Q AND P P OR (Q OR R) = (P OR Q) OR R P AND (Q AND R) = (P AND Q) AND R P OR (Q AND R) = (P OR Q) AND (P OR R) P AND (Q OR R) = (P AND Q) OR (P AND R) NOT(P OR Q) = (NOT P) AND (NOT Q) NOT(P AND Q) = (NOT P) OR (NOT Q)Доказательства булевых тождеств могут быть организованы в таблицах, в которых перечислены все комбинации булевых значений операндов, и каждая часть тождества эквивалентна по базовым таблицам истинности, затем скомбинированы для того, чтобы найти значение левой и правой части. Если эти значения равны во всех случаях, то тождество считается доказанным. Например: 1. TRUE AND P = P
9. P OR Q = Q OR P
|
Численность населения на начало каждого года
Наложение повязки «рыцарская перчатка»
Новые промышленные страны
Формы рефлексивного осмысления научного зания: теория зания, методология и логика науки
Деяния в чужом интересе без поручения
СОДЕРЖАНИЕ. Министерство образования и науки Русской Федерации
Глава 6. Сейчас, когда Антуанетта смотрелась так же, как и другие девицы, ее новые подруги предложили ей пойти с ними на танцы
ВСПЕНИВАНИЕ ШЛАКА
Костюмчик 1800—1825 годов. Стиль ампир
Вкладывательный портфель, виды, цели формирования