Вернутся на главную

Способ аналитической аппроксимации. Способ основан на аппроксимации свойства нелинейного элемента аналитической функцией, которая должна


Способ аналитической аппроксимации. Способ основан на аппроксимации свойства нелинейного элемента аналитической функцией, которая должна на нашем сайте

Статьи
Статьи для студентов
Статьи для учеников
Научные статьи
Образовательные статьи Статьи для учителей
Домашние задания
Домашние задания для школьников
Домашние задания с решениями Задания с решениями
Задания для студентов
Методички
Методические пособия
Методички для студентов
Методички для преподавателей
Новые учебные работы
Учебные работы
Доклады
Студенческие доклады
Научные доклады
Школьные доклады
Рефераты
Рефератывные работы
Школьные рефераты
Доклады учителей
Учебные документы
Разные образовательные материалы Разные научные материалы
Разные познавательные материалы
Шпаргалки
Шпаргалки для студентов
Шпаргалки для учеников
Другое

Метод основан на аппроксимации характеристики нелинейного элемента аналитической функцией, которая должна, с одной стороны, достаточно точно отображать исходную нелинейную характеристику на участке перемещения рабочей точки, а с другой стороны, обеспечивать возможность достаточно несложного интегрирования полученного дифференциального уравнения (в частности, с использованием табличных интегралов).

Метод применим к нелинейным цепям с одним накопителем энергии, описываемым дифференциальными уравнениями первого порядка, а также к цепям, описываемым уравнениями, сводящимися к уравнениям первого порядка путем замены переменных.

Ценность метода заключается в получении выражения исследуемой величины в общем виде, что позволяет осуществлять требуемый анализ процессов при варьировании параметров схемы.

В качестве примера использования метода определим ток в схеме на рис. 3, полагая, что характеристика нелинейной катушки имеет вид типовой кривой на рис. 2.

1. Для решения задачи выберем выражение аналитической аппроксимации вида . Определяя параметр из условия соответствия данной функции точке установившегося послекоммутационного режима, получим

, (4)

где .

2. Подставив в уравнение переходного процесса

аналитическое выражение тока с учетом (4), получим

(5)

Разделяя переменные и решая (5) относительно времени, запишем

(6)

где – начальное значение потокосцепления, соответствующее значению тока в момент коммутации .

Выражение (6) соответствует табличному интегралу; в результате получаем

. (7)

Подставив в последнее соотношение выражение потокосцепления в виде

,

перепишем (7) как

.





Название статьи Метод аналитической аппроксимации. Метод основан на аппроксимации характеристики нелинейного элемента аналитической функцией, которая должна