Вернутся на главную

Наибольшее и меньшее значения функции


Наибольшее и меньшее значения функции на нашем сайте

Статьи
Статьи для студентов
Статьи для учеников
Научные статьи
Образовательные статьи Статьи для учителей
Домашние задания
Домашние задания для школьников
Домашние задания с решениями Задания с решениями
Задания для студентов
Методички
Методические пособия
Методички для студентов
Методички для преподавателей
Новые учебные работы
Учебные работы
Доклады
Студенческие доклады
Научные доклады
Школьные доклады
Рефераты
Рефератывные работы
Школьные рефераты
Доклады учителей
Учебные документы
Разные образовательные материалы Разные научные материалы
Разные познавательные материалы
Шпаргалки
Шпаргалки для студентов
Шпаргалки для учеников
Другое

Наибольшее и наименьшее значения функции непрерывной и кусочно-дифференцируемой (дифференцируемой, за исключением, быть может, конечного числа точек) на отрезке достигается или во внутренних критических точках или на концах отрезка.

В задачах 5.249-5.260 найти наибольшие и наименьшие значения следующих функций в указанных промежутках:

5.249 5.250

5.251 5.252

5.253 5.254

5.255 5.256

5.257 . 5.258 .

5.259 5.260 .

5.261. Число 8 разбить на 2 неотрицательных слагаемых, чтобы сумма их кубов была наименьшей.

5.262 Какое положительное число, будучи сложено с обратным ему числом, дает наименьшую сумму?

5.263 Число 36 разложить на два таких неотрицательных множителя, чтобы сумма их квадратов была наименьшей.

5.264 На параболе найти точку , наименее удаленную от прямой

5.265 Через данную точку провести прямую так, чтобы сумма длин положительных отрезков, отсекаемых ею на координатных осях, была наименьшей.

5.266 Отрезок длины разделить на две части так, чтобы сумма площадей квадратов, построенных на этих частях, была наименьшей.

5.267 Определить наибольшую площадь прямоугольника, вписанного в круг радиуса .

5.268В полукруг радиуса R вписан прямоугольник с наибольшей площадью. Определить его основание и высоту

5.269 Окно имеет форму прямоугольника, завершенного полукругом. Задан периметр Р этой фигуры. При каких размерах окно будет пропускать наибольшее количество света?

5.270 Объем правильной треугольной призмы равен V. Какова должна быть сторона основания, чтобы полная поверхность призмы была наименьшей?

5.271 Найти высоту цилиндра наибольшего объема, который можно вписать в шар радиуса R.

5.272 Найти высоту конуса наибольшего объема, который можно вписать в шар радиуса R.

5.273 Требуется изготовить ящик с крышкой, объем которого был бы равен 72см3 , причем стороны основания относились бы, как 1:2. Каковы должны быть размеры всех сторон, чтобы полная поверхность была наименьшей?

5.274 Требуется изготовить коническую воронку с образующей, равной 20 см. Какова должна быть высота воронки, чтобы её объем был наибольшим?

5.275 Бревно длиной 20 м имеет форму усеченного конуса, диаметры оснований которого равны соответственно 2м и 1м. Требуется вырубить из бревна балку с квадратным поперечным сечением, ось которой совпадала бы с осью бревна и объем которой был бы наибольшим. Каковы должны быть размеры балки?

5.276 Завод А отстоит от железной дороги, идущей с юга на север и проходящей через город В, считая по кратчайшему расстоянию, на расстоянии . Под каким углом к железной дороге следует построить подъездной путь от завода, чтобы транспортировка грузов из А в В была наиболее экономичной, если стоимость провоза тонны груза на расстояние 1 км составляет по подъездному пути ден.ед., по железной дороге - ден.ед. и город В расположен на расстоянии севернее завода А.

5.277На какой высоте над центром круглого стола радиуса следует поместить электрическую лампочку, чтобы освещённость края стола была наибольшей? Указание: освещённость выражается формулой , где - угол наклона лучей к плоскости стола, - расстояние источника света от освещаемой площадки, - сила источника света.

5.278Функция издержек производства предприятием продукции имеет вид , где - объём производства. Найти при каком объёме выпускаемой предприятием продукции средние издержки производства будут наименьшими.

5.279Найти оптимальный для предприятия объём выпускаемой продукции при котором прибыль окажется наибольшей, если весь товар реализуется по фиксированной цене ден.ед. за 1 единицу продукции, а функция издержек имеет следующий вид: а) ,;б) , .

5.280Найти оптимальный для предприятия объём выпускаемой продукции при котором прибыль окажется наибольшей. Предполагается, что весь товар реализуется по цене ден.ед. за 1 единицу продукции объёма , который можно продать по этой цене, а функция издержек имеет следующий вид:

а) , ;б) , .





Название статьи Наибольшее и наименьшее значения функции