Вернутся на главную

Проверка догадки о согласовании эмпирического рассредотачивания теоретическому


Проверка догадки о согласовании эмпирического рассредотачивания теоретическому на нашем сайте

Статьи
Статьи для студентов
Статьи для учеников
Научные статьи
Образовательные статьи Статьи для учителей
Домашние задания
Домашние задания для школьников
Домашние задания с решениями Задания с решениями
Задания для студентов
Методички
Методические пособия
Методички для студентов
Методички для преподавателей
Новые учебные работы
Учебные работы
Доклады
Студенческие доклады
Научные доклады
Школьные доклады
Рефераты
Рефератывные работы
Школьные рефераты
Доклады учителей
Учебные документы
Разные образовательные материалы Разные научные материалы
Разные познавательные материалы
Шпаргалки
Шпаргалки для студентов
Шпаргалки для учеников
Другое

Расхождения между частотами эмпирического и теоретического распределений могут быть несущественными и объяснены случайностями выборки, а могут быть существенными при несоответствии законам распределения. Чтобы дать обоснованное объяснение причин расхождения между эмпирическими и теоретическими частотами, обращаются к критериям соответствия или согласия. К ним относятся критерии Пирсона, Романовского, Колмогорова, Ястремского и др.

Одним из наиболее часто употребляемых критериев согласия является критерии («хи-квадрат»), предложенный К. Пирсоном:

где и –частоты эмпирического и теоретического распределения в определенном интервале.

Чем больше разность между наблюдаемыми и теоретическими частотами, тем больше критерий . Чтобы отличить существенность различий частот эмпирического и теоретического распределений, рассчитанное значение критерия сравнивают с табличным при соответствующем числе степеней свободы и заданной вероятности (уровне значимости).

Число степеней свободы равно a=h-l, где h. — число групп; l — число условий, которые должны выполняться при вычислении теоретических частот. Для расчета теоретических частот кривой нормального распределения по формуле

необходимо знать три параметра , , , поэтому число степеней свободы равно a=h-3

Если > , то расхождение между эмпирическими и теоретическими частотами существенно и его нельзя объяснить случайными колебаниями выборочных данных. В этом случае гипотеза о соответствии эмпирического и теоретического распределения отвергается. Если ,то возможное расхождение частот объясняется случайностями выборочного наблюдения и гипотеза о соответствии распределений принимается.

Критерии Пирсона эффективен при значительном числе наблюдений (п 50), причем частоты всех интервалов должны насчитывать не менее пяти единиц (при меньшем количестве интервалы объединяют), а число интервалов (групп) должно быть большим (h > 5), поскольку оценка зависит от числа степеней свободы.

Пример. Проверить нулевую гипотезу о соответствии распределения специалистов связи по уровню заработной платы нормальному закону. Расчетные величины для определения критерия Пирсона приведены в табл. 3.

Расчетное значение критерия Пирсона == 7,12. При числе степеней свободы h-3 = 9-3 = 6 и уровне значимости 0,05 = 12,59. (см. приложение 5)

Так как ‹ гипотезу осоответствии эмпирического распределения нормальному не следует отвергать, т.е. данное распределение соответствует закону нормального распределения.





Название статьи Проверка гипотезы о соответствии эмпирического распределения теоретическому